CLINICAL CAPABILITIES // Genetic testing

Epilepsy

Identify genetic risk factors and causes of epilepsy.

Clinical at Psomagen

About Genetic Testing for Epilepsy

Epilepsy is a chronic seizure disorder characterized by seizures that usually recur unpredictably in the absence of a consistent provoking factor. Most epileptic syndromes are genetically heterogeneous. Pathogenic variants in different genes cause the same syndrome in different individuals or families, and only a fraction of the potential genetic causes have been identified so far. Genetic assessment is enhanced when clinical information is available.

Although a positive test result can confirm or suggest that an individual has a specific syndrome, a negative test result might be uninformative. Fewer than one in five individuals with autosomal dominant nocturnal frontal lobe epilepsy have a pathogenic variant in any of the genes currently associated with that disorder.

In syndromes with incomplete penetrance and variable expressivity, a positive test result in an unaffected family member does not necessarily mean that the individual will develop epilepsy in the future, nor can it predict the specific phenotype if the individual does. An important example of this problem is genetic epilepsy with febrile seizures plus (GEFS+), in which some family members with a SCN1A variant remain unaffected, and phenotypes in affected family members vary from simple age limited febrile seizures to severe epileptic encephalopathies.

1

Genetic testing may help identify the cause of a person's epilepsy

2

It may lead to an accurate diagnosis and the best possible medical management

3

It may be particularly helpful for individuals with genetic epilepsy disorders whose seizures are not well-controlled

How Do I Order a Test?

A printed copy of the requisition form must be submitted with the specimen if you are not placing your order through the online portal. You can find and print a copy of the requisition form here. If you need to modify your order, please contact client services.

Epilepsy Panel Best Practices

Preferred Specimen

2mL whole blood in a purple-top EDTA tube (K2EDTA or K3EDTA)

Alternate Specimens

  • Saliva
  • Buccal swab
  • gDNA
Let's get started!

How to Ship Your Samples

Follow IATA Regulations

Please note that Psomagen sample collection kits are built to protect the samples from being damaged during transport and to comply with the International Air Transport Association (IATA) regulation. If you are using packaging other than that provided by Psomagen, please make sure to follow the "three layers of packaging" rule to avoid the risk of having the package destroyed by the courier:

  • A primary sample receptacle sealed (collection tube).
  • A leak-proof specimen bag containing absorbent material.
  • An outer packaging that meets the local postal regulations and is labeled as “Exempt Human Specimen.”

For more information please refer to page 187 of IATA Dangerous Goods Regulation.

Additional Shipment Requirements

For saliva, ship at room temperature (overnight shipping is not necessary).

For blood, we recommend using overnight shipping the same day that the blood is collected.

  • Blood can be kept at room temperature for up to 48 hours.
  • We request that blood is refrigerated no longer than two weeks.
  • Please do not freeze blood as deletion/duplication analysis is not supported for frozen or partially frozen blood.

Please ship the specimen in a crush-proof container via FedEx Priority Overnight (in accordance with the FedEx Packaging Guidelines for Clinical Samples.

Our US Shipping Address

Attn: Clinical Laboratory Testing Personnel
Psomagen Inc.
1330 Piccard Drive, Ste 103
Rockville, MD 20850

Test for 46 related genes

Gene List

AALDH7A1
AMT
ARHGEF9
ATP1A2
CACNA1A
CDKL5
CHD2
CNTNAP2
DNM1
DOCK7
FOLR1
GABRA1
GABRG2
GLRA1
GRIN2A
GRIN2B
KCNQ2
KCNQ3
KCNT1
MECP2
MEF2C
PCDH19
PNKP
PNPO
POLG
PRRT2
SCN1A
SCN1B
SCN2A
SCN8A
SCN9A
SLC2A1
SLC46A1
SLC9A6
SPTAN1
STX1B
STXBP1
SYN1
SYNGAP1
SZT2
TBC1D24
TCF4
TPP1
TSC1
TSC2
ZEB2
 

Test Methodology and Limitations

DNA sequencing involves the extraction of genomic DNA from specimens collected in approved containers and provided the specimen meets required sample minimum quantity (e.g. volume, weight, etc.) this is followed by quantification and qualification to ensure the adequacy of amount and purity for sequencing. Subsequently, whole exome sequencing is conducted on an IlluminaTM short read sequencing (SRS) platform (e.g., NovaSeq X PlusTM) at Psomagen, Inc.’s laboratories (CLIA # 21D2062464, CAP # 8742212). DNA sequence alignment, variant calling, and variant filtering are performed utilizing the Illumina DRAGENTM bioinformatics pipeline (version 4.2.4.) and various tool sets, which align reads to the human reference genome (GRCh38) and identify single nucleotide variants (SNVs) and small insertions/deletions (InDels).

Variant annotations are performed using a pipeline available in Fabric Enterprise. Variant review and interpretation are conducted according to the standards and guidelines set forth by the American College of Medical Genetics and Genomics (Richards S, et al., Genet Med., 2015) by Fabric Clinical Labs (CLIA #45D2281059, CAP # 9619501). Only variants classified as pathogenic or likely pathogenic are reported. The following quality filters are applied to all variants: coverage <40x, allele balance outside 0.3-0.7.

Variants in the following genes are reported: ALDH7A1, AMT, ARHGEF9, ATP1A2, CACNA1A, CDKL5, CHD2, CNTNAP2, DNM1, DOCK7, FOLR1, GABRA1, GABRG2, GLRA1, GRIN2A, GRIN2B, KCNQ2, KCNQ3, KCNT1, MECP2, MEF2C, PCDH19, PNKP, PNPO, POLG, PRRT2, SCN1A, SCN1B, SCN2A, SCN8A, SCN9A, SLC2A1, SLC46A1, SLC9A6, SPTAN1, STX1B, STXBP1, SYN1, SYNGAP1, SZT2, TBC1D24, TCF4, TPP1, TSC1, TSC2, ZEB2

This test is designed to detect single nucleotide variants (SNVs) and small insertions/deletions (InDels). Next-Generation Sequencing (NGS) coverage may vary across the genome, potentially resulting in missed variants in regions with low coverage depth. Some genetic abnormalities may be undetectable with the current version of this test. While the DRAGEN bioinformatics pipeline demonstrates high accuracy for variant calling, there remains a possibility of false positive or false negative results due to variant interpretation which relies on current scientific knowledge and available databases. This may lead to the reclassification of reported variants as new information emerges from ongoing research and is updated in the ACMG guidelines. Furthermore, systematic chemical, computational, or human errors may contribute to false positives or false negatives of DNA variants. For any reported variants, confirmation by orthogonal technology and subsequent consultation with a genetic counselor or qualified healthcare provider can help to establish definitive risk. This result should be considered preliminary until such confirmation has been performed.

Clinical management for this individual should be based on personal and family history, along with other relevant information. If considered relevant to this individual’s clinical presentation and/or family history, targeted testing of appropriate family members of this individual for the reported variants may help to interpret these results. For assistance with the interpretation of these results, healthcare professionals may contact Psomagen directly at (301) 251-1007 or support@psomagen.com.

More Resources

  1. Nackley AG, Shabalina SA, Tchivileva IE, et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. 2006 Dec 22;314(5807):1930-1933. PubMed 17185601

  2. Richards S, Nazneen A, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med.2015 May;17(5):405-424. PubMed 25741868

  3. Poduri A, Sheidley BR, Shostak S, Ottman R. Genetic Testing in the Epilepsies-Developments and Dilemmas. Nat Rev Neurol.2014 May;10(5):293-299. PubMed 24733164

  4. Steinlein OK, Mulley JC, Propping P, Wallace RH, Phillips HA, Sutherland GR, Scheffer IE, Berkovic SF.. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsyNat Genet1995; 11: 201– 203. [PubMed[Google Scholar]

  5. Kalachikov S, Evgrafov O, Ross B, Winawer M, Barker-Cummings C, Martinelli Boneschi F, Choi C, Morozov P, Das K, Teplitskaya E, Yu A, Cayanis E, Penchaszadeh G, Kottmann AH, Pedley TA, Hauser WA, Ottman R, Gilliam TC.. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory featuresNat Genet2002; 30: 335– 341. [PMC free article] [PubMed[Google Scholar]

  6. Wallace RH, Scheffer IE, Barnett S, Richards M, Dibbens L, Desai RR, Lerman-Sagie T, Lev D, Mazarib A, Brand N, Ben-Zeev B, Goikhman I, Singh R, Kremmidiotis G, Gardner A, Sutherland GR, George AL Jr, Mulley JC, Berkovic SF.. Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plusAm J Hum Genet2001; 68: 859– 865. [PMC free article] [PubMed[Google Scholar]

  7. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P.. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancyAm J Hum Genet2001; 68: 1327– 1332. [PMC free article] [PubMed[Google Scholar]

  8. Poduri A, Lowenstein D.. Epilepsy genetics—Past, present, and futureCurr Opin Genet Dev2011; 21: 325– 332. [PMC free article] [PubMed[Google Scholar]

  9. Helbig I, Lowenstein DH.. Genetics of the epilepsies: Where are we and where are we going?Curr Opin Neurol 2013; 26: 179– 185. [PMC free article] [PubMed[Google Scholar]

  10. International League Against Epilepsy Consortium on Complex Epilepsies (epilepsy-austin@unimelb.edu.au). . Genetic determinants of common epilepsies: A meta-analysis of genome-wide association studiesLancet Neurol2014; 13: 893– 903. doi:10.1016/S1474-4422(14)70171-1. [PMC free article][PubMed[Google Scholar]

  11. Veeramah KR, Johnstone L, Karafet TM, Wolf D, Sprissler R, Salogiannis J, Barth-Maron A, Greenberg ME, Stuhlmann T, Weinert S, Jentsch TJ, Pazzi M, Restifo LL, Talwar D, Erickson RP, Hammer MF.. Exome sequencing reveals new causal mutations in children with epileptic encephalopathiesEpilepsia2013; 54: 1270– 1281. [PMC free article][PubMed[Google Scholar]

  12. Epi4K Consortium; Epilepsy Phenome/Genome Project, Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, Epstein MP, Glauser T, Goldstein DB, Han Y, Heinzen EL, Hitomi Y, Howell KB, Johnson MR, Kuzniecky R, Lowenstein DH, Lu YF, Madou MR, Marson AG, Mefford HC, Esmaeeli Nieh S, O'Brien TJ, Ottman R, Petrovski S, Poduri A, Ruzzo EK, Scheffer IE, Sherr EH, Yuskaitis CJ, Abou-Khalil B, Alldredge BK, Bautista JF, Berkovic SF, Boro A, Cascino GD, Consalvo D, Crumrine P, Devinsky O, Dlugos D, Epstein MP, Fiol M, Fountain NB, French J, Friedman D, Geller EB, Glauser T, Glynn S, Haut SR, Hayward J, Helmers SL, Joshi S, Kanner A, Kirsch HE, Knowlton RC, Kossoff EH, Kuperman R, Kuzniecky R, Lowenstein DH, McGuire SM, Motika PV, Novotny EJ, Ottman R, Paolicchi JM, Parent JM, Park K, Poduri A, Scheffer IE, Shellhaas RA, Sherr EH, Shih JJ, Singh R, Sirven J, Smith MC, Sullivan J, Lin Thio L, Venkat A, Vining EP, Von Allmen GK, Weisenberg JL, Widdess-Walsh P, Winawer MR.. De novo mutations in epileptic encephalopathiesNature2013; 501: 217– 221. [PMC free article][PubMed[Google Scholar]

  13. EuroEPINOMICS-RES Consortium; Epilepsy Phenome/Genome Project; Epi4K Consortium. . De Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic EncephalopathiesAm J Hum Genet2014; 95: 360– 370. [PMC free article][PubMed[Google Scholar]

  14. Olson H, Shen Y, Avallone J, Sheidley BR, Pinsky R, Bergin AM, Berry GT, Duffy FH, Eksioglu Y, Harris DJ, Hisama FM, Ho E, Irons M, Jacobsen CM, James P, Kothare S, Khwaja O, Lipton J, Loddenkemper T, Markowitz J, Maski K, Megerian JT, Neilan E, Raffalli PC, Robbins M, Roberts A, Roe E, Rollins C, Sahin M, Sarco D, Schonwald A, Smith SE, Soul J, Stoler JM, Takeoka M, Tan WH, Torres AR, Tsai P, Urion DK, Weissman L, Wolff R, Wu BL, Miller DT, Poduri A.. Copy number variation plays an important role in clinical epilepsyAnn Neurol2014; 75: 943– 958. [PMC free article][PubMed[Google Scholar]

  15. Mefford HC, Yendle SC, Hsu C, Cook J, Geraghty E, McMahon JM, Eeg-Olofsson O, Sadleir LG, Gill D, Ben-Zeev B, Lerman-Sagie T, Mackay M, Freeman JL, Andermann E, Pelakanos JT, Andrews I, Wallace G, Eichler EE, Berkovic SF, Scheffer IE.. Rare copy number variants are an important cause of epileptic encephalopathiesAnn Neurol2011; 70: 974– 985. [PMC free article][PubMed[Google Scholar]

  16. Mefford HC, Muhle H, Ostertag P, von Spiczak S, Buysse K, Baker C, Franke A, Malafosse A, Genton P, Thomas P, Gurnett CA, Schreiber S, Bassuk AG, Guipponi M, Stephani U, Helbig I, Eichler EE.. Genome-wide copy number variation in epilepsy: Novel susceptibility loci in idiopathic generalized and focal epilepsiesPLoS Genet2010; 6: e1000962 doi:10.1371/journal.pgen.1000962. [PMC free article][PubMed[Google Scholar]

  17. de Kovel CG, Trucks H, Helbig I, Mefford HC, Baker C, Leu C, Kluck C, Muhle H, von Spiczak S, Ostertag P, Obermeier T, Kleefuss-Lie AA, Hallmann K, Steffens M, Gaus V, Klein KM, Hamer HM, Rosenow F, Brilstra EH, Trenité DK, Swinkels ME, Weber YG, Unterberger I, Zimprich F, Urak L, Feucht M, Fuchs K, Møller RS, Hjalgrim H, De Jonghe P, Suls A, Rückert IM, Wichmann HE, Franke A, Schreiber S, Nürnberg P, Elger CE, Lerche H, Stephani U, Koeleman BP, Lindhout D, Eichler EE, Sander T.. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsiesBrain2010; 133: 23– 32. [PMC free article][PubMed[Google Scholar]

  18. Heinzen EL, Radtke RA, Urban TJ, Cavalleri GL, Depondt C, Need AC, Walley NM, Nicoletti P, Ge D, Catarino CB, Duncan JS, Kasperaviciūte D, Tate SK, Caboclo LO, Sander JW, Clayton L, Linney KN, Shianna KV, Gumbs CE, Smith J, Cronin KD, Maia JM, Doherty CP, Pandolfo M, Leppert D, Middleton LT, Gibson RA, Johnson MR, Matthews PM, Hosford D, Kälviäinen R, Eriksson K, Kantanen AM, Dorn T, Hansen J, Krämer G, Steinhoff BJ, Wieser HG, Zumsteg D, Ortega M, Wood NW, Huxley-Jones J, Mikati M, Gallentine WB, Husain AM, Buckley PG, Stallings RL, Podgoreanu MV, Delanty N, Sisodiya SM, Goldstein DB.. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromesAm J Hum Genet2010; 86: 707– 718. [PMC free article][PubMed[Google Scholar]

  19. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL; ACMG Laboratory Quality Assurance Committee. . Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular PathologyGenet Med2015; 17: 405– 424. [PMC free article][PubMed[Google Scholar]